Région académique
Auvergne-
Rhône-Alpes

Portail documentaire

CDI - Lycée International Jeanne-d'Arc

  • Historique de recherches
    • Recherche simple
    • Recherche avancée
    • Périodiques
    • Le CDI du lycée
    • Orientation
    • Prix manga
    • Littérature Jeunesse et Jeunes adultes
    • Book review
    • Sélection fictions langues américaines et anglaises
    • Sélection fictions langues germaniques
    • Sélection fictions langue italienne
    • Sélection fiction langue espagnole
    • Sélection fiction langue russe
    • FLE/UPE2A
    • Book review
    • Bac de Français
    • Mathématiques
    • Ressources institutionnelles
    • Ressources pédagogiques
    • Des outils
    • Faire une recherche avec PMB

Se connecter



Mot de passe oublié ?
  1. Accueil
  2. Retour
  • Détail
  • Bibliographie
« L'autoréférence. 1 » in Tangente (Paris), 191 (12/2019), p.37-52.

L'autoréférence. 1
Ajouter au panier Ajouter au panier
CommentairesAucun avis sur cette notice.
Titre : L'autoréférence. 1 (2019)
Type de document : Article : texte imprimé
Dans : Tangente (Paris) (191, 12/2019)
Article en page(s) : p.37-52
Note générale Bibliographie, webographie.
Langues de la publication : Français
Descripteurs

[UNESCO] Logique

[UNESCO] Logique mathématique

Mots-clés : suite mathématique
Résumé : Dossier consacré à la notion d'autoréférence. L'autoréférence comme source de jeux et de paradoxes logiques utiles, dans le domaine des lettres, des mathématiques (systèmes de numération, suite fractale, ensembles de Mandelbrot, ensembles autopavables, autoglyphes), des arts (Magritte, Plantu), de la psychanalyse. La résolution de jeux autoréférents par l'utilisation de la méthode des approximations successives. Des exemples d'autoréferences chiffrées et textuelles (Douglas Hofstadter, Eric Chevillard, Groucho Marx, Pierre Dac). Histoire et décryptage de la suite mathématique de Conway appelée suite look and say comme suite audiodescriptive ou suite audioactive ; les nombres autoaudioactifs ; le tableau périodique des éléments audioactifs ; le théorème chimique ; le théorème cosmologique ou théorème du vingt-quatrième jour et sa démonstration par Shalosh B. Ekhad et Doron Zeilberger. Les nombres autobiographiques et leur extension (nombres autodécrits), les nombres de Skolem-Langford, la suite mathématique de Kolakoski K, la suite K triple (triplement fractale), le principe de la concaténation. Encadrés : présentation du mathématicien John Conway et de ces centres d'intérêt ; présentation mathématique et représentation graphique de la constante de Conway avec les soixante et onze racines du polynôme la composant.
Nature du document : Article de périodique

Exemplaires (1)

Code-barresCoteSupportLocalisationSectionDisponibilité
52472Presse scientifiquePériodiqueCDI 1Presse scientifiqueDisponible
Nouvelle recherche
Haut de page

Horaires

Lundi : 8h-18h

Mardi : 8h-18h

Mercredi : 8h-13h

Jeudi : 8h-18h

Vendredi : 8h-18h

Contact

04 73 92 66 10

Liens utiles

  • Mentions légales
  • PMB Services
  • Plan du site
  • data.gouv.fr
  • logo académie de Clermont